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Change Analysis of Default Correlation and Dynamic

Pricing of Collateralized Debt Obligations

Abstract

In this paper we use dynamic copulas method to price a CDO. We apply GOF test and binary

segmentation procedure to detect the change of copula function. According to the result of the

change point, we divide the time series into nine stages. In each stage, we use the best copula

function to describe the default correlation. Our empirical results show that in different time

period, the best copula fitting to data set is not static, thus the expected loss and fair spread are

different for each stages. This explains why investors of CDO suffered so much when financial

crisis happened. We also give a comparison among static copula model, dynamic Gaussian

copula model and dynamic copula model, in the end we find dynamic copula model not only

include the tail dependence in default structure, but also provide a more insensitive way to price

CDO.

Keywords: CDO pricing, Default correlation, Dynamic copula, Goodness-of-fit test, Change

point analysis



1 Introduction

In recent years credit derivatives have become a main tool to transfer and hedge credit risk.

Among these credit derivatives, Collateralized Debt Obligation(CDO), which is a kind of se-

curity consisting of a pool of assets (e.g. bonds, loans, credit default swaps and commercial

mortgages), becomes the most rapidly developed item in derivative markets. CDOs transfer the

risk of reference entities to investors who are willing to take these risks and get benefit from

them. A CDO is decomposed into several tranches, each of which has an attachment percentage

and a detachment percentage. Investors in each tranche start to lose their principal when the

cumulative percentage loss of the portfolio reaches their attachment percentage, and when the

cumulative percentage loss gets to the detachment percentage, the investors in the tranche lose

all their principals but no more beyond that. In other words, CDO provides a protection for

investors under this situation.

There are two major methods to price credit derivatives: structural approach initiated by

Merton (1974) and reduced-form approach proposed by Jarrow and Turnbull (1995). A critical

point to the pricing of credit derivatives is how to characterize the default correlation which

becomes even more difficult for CDO pricing. In order to price CDO tranches, it is essentially

to find out the marginal distribution of all reference entities and their joint distribution. For the

problem of joint distribution, copula method has been widely used because of its convenience

to characterize the dependence structure. Li (2000) suggested to use Gaussian copula in credit

risk modeling to estimate the default correlation and this method had been widely used in

Wall Street. However, when using Gaussian copula to model the default correlation, one can

detect the smile effect which is explained to be lack of tail dependence and underpricing the

upper tranches of a CDO. To fix this deficiency, many authors proposed different approaches

to bring more tail dependence into the model. Glasserman and Suchintabandid (2007) used

correlation expansions for CDO pricing but still under the approach of Gaussian copula. Hull and

White (2004) proposed the double 𝑡 distribution; and Anderson and Sidenius (2005) introduced

Marshall-Olkin copula which are more capable to capture the tail dependence. Xu (2006) used
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the mixture copula model of multi Gaussian distributions, while Wang et al (2006) used double

mixture of student 𝑡 and Gaussian copula. Yang and Qin (2009) used mixture of NIG and

Gaussian copula to price CDO tranches. They all found that mixture copula fitted better than

the single one. Besides these, Grane and Hoek (2008) suggested to use distortions of copulas to

produce a heavy tailed portfolio loss distribution and price synthetic CDOs.

All of the methods mentioned above are based on a common assumption of static dependence

structure. However, financial data often covers a long time period, so the dependence structure

tends to change instead of keeping static. As we all know, the recent financial crisis is closely

related to the characterization of default correlation and pricing of CDO. This crisis brought a

critical issue to related communities: how to price those multi-name credit derivatives, such as

CDO under different situations. In this paper we will use dynamic copulas to analyze default

correlation and pricing CDO.

Dias and Embrechts (2009) use time varying copula models to analyze the dependence struc-

ture between foreign exchange returns on USD/DEM and USD/JPY spot rates across six differ-

ent time frequencies from one hour to one day. Their work shows an improvement to the time

invariant copula model. Zhang and Guegan (2008) employ GARCH process together with time-

varying copula to price bivariate options and the result shows that dynamic copulas together

with time-varying parameters offer a better alternative to any static model for dependence struc-

ture. Zhang (2008) apply dynamic copula method to measure the dynamic dependence structure

of financial data and calculate the dynamic VaR of S&P500 and Nasdaq Index.

There are two types of changes for the default correlation: one is the change of copula

parameters while the copula family keeps the same; another one is the change of copula family.

In this paper, we use dynamic copula method to describe the time-varying dependence structure

between reference entities and propose a dynamic pricing model for CDO. According to the

binary segmentation procedure, we divide the time sample into different stages. In each stage,

we use maximum likelihood principle to choose the copula that best fitting the date. In our

empirical work, we find that the dependent structure of financial data changes from time to
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time, especially when a financial event busted out. So in different time periods, we use different

copulas, each of which is the best one for that period, to describe the dependent structure. Then

we get the joint distribution of all reference entities in CDO and then price each tranche of it.

The rest of this paper is organized as follows. In Section 2 we introduce the dynamic copula

model and the methods will be used in our empirical study; Section 3 describes the methods

to calculating the expected loss and fair spread of a CDO; An empirical study is presented in

Section 4 to demonstrate the implementation of our method; Section 5 concludes the paper.

2 Dynamic Copula Model

In this section, we will first simply introduce the dynamic copula model, then we will introduce

Goodness-of-fit test which will be used to test copula’s changes in our empirical work. At last,

we will give a detailed analysis for the changes of copulas.

2.1 Copulas and Dynamic Copulas

An 𝑛-dimensional copula is a function 𝐶 : [0, 1]𝑛 → [0, 1] with the following properties:

(i)(Grounded) 𝐶(𝑢) = 𝐶(𝑢1, 𝑢2, . . . , 𝑢𝑛) = 0 when at least one coordinate 𝑢𝑖 is equal to zero.

(ii)If all coordinate of u are equal to one except 𝑢𝑘 then 𝐶(𝑢) = 𝐶(𝑢1, 𝑢2, . . . , 𝑢𝑛) = 𝑢𝑘, 𝑘 =

1, 2, . . . , 𝑛.

(iii)(Increasing) 𝐶 is 𝑛-increasing.

According to copula’s definition, Sklar (1959) indicate that a copula function is essentially the

joint distribution of 𝑛 random variables: Let 𝐹 be the joint distribution of 𝑛 random variables

with marginal distributions 𝐹1, 𝐹2, . . . , 𝐹𝑛, then there exists a copula function 𝐶 satisfying:

𝐹 (𝑥1, ..., 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), ..., 𝐹𝑛(𝑥𝑛)) (1)
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If 𝐹1, 𝐹2, . . . , 𝐹𝑛 is continuous, then 𝐶 is unique. There are several typical copulas, such as

Gaussian copula, Student 𝑡 copula and Archimedean copulas. For details please see Nelsen

(1999) or Cherubini et al (2004).

As introduced in introduction, the dynamic copula model is divided into two parts: the

changes of parameters and the changes of copula itself. Let 𝑋1𝑡, 𝑋2𝑡, ..., 𝑋𝑛𝑡 be an 𝑛-dimensional

stochastic process, then a dynamic copula can be described as follows:

𝑋1𝑡 ∼ 𝐹1𝑡(𝑥1𝑡; 𝛾11), 𝑡 = 1, 2, ..., 𝑠11,

𝑋1𝑡 ∼ 𝐹1𝑡(𝑥1𝑡; 𝛾12), 𝑡 = 𝑠11 + 1, 𝑠11 + 2, ..., 𝑠12,

...

𝑋1𝑡 ∼ 𝐹1𝑡(𝑥1𝑡; 𝛾1𝑘1), 𝑡 = 𝑠1,𝑘1−1 + 1, 𝑠1,𝑘1−1 + 2, ..., 𝑇,

𝑋2𝑡 ∼ 𝐹2𝑡(𝑥2𝑡; 𝛾21), 𝑡 = 1, 2, ..., 𝑠21,

𝑋2𝑡 ∼ 𝐹2𝑡(𝑥2𝑡; 𝛾22), 𝑡 = 𝑠21 + 1, 𝑠21 + 2, ..., 𝑠22,

...

𝑋2𝑡 ∼ 𝐹2𝑡(𝑥2𝑡; 𝛾2𝑘2), 𝑡 = 𝑠2,𝑘2−1 + 1, 𝑠2,𝑘2−1 + 2, ..., 𝑇,

...

𝑋𝑛𝑡 ∼ 𝐹𝑛𝑡(𝑥𝑛𝑡; 𝛾𝑛1), 𝑡 = 1, 2, ..., 𝑠𝑛1,

𝑋𝑛𝑡 ∼ 𝐹𝑛𝑡(𝑥𝑛𝑡; 𝛾𝑛2), 𝑡 = 𝑠𝑛1 + 1, 𝑠𝑛1 + 2, ..., 𝑠𝑛2,

...

𝑋𝑛𝑡 ∼ 𝐹𝑛𝑡(𝑥𝑛𝑡; 𝛾𝑛𝑘𝑛), 𝑡 = 𝑠𝑛,𝑘𝑛−1 + 1, 𝑠𝑛,𝑘𝑛−1 + 2, ..., 𝑇,

(𝑋1𝑡, 𝑋2𝑡, ..., 𝑋𝑛𝑡) ∼ 𝐶1(𝐹1𝑡(𝑥1𝑡), 𝐹2𝑡(𝑥2𝑡), ..., 𝐹𝑛𝑡(𝑥𝑛𝑡); 𝜃1), 𝑡 = 1, 2, ..., 𝑠1,

(𝑋1𝑡, 𝑋2𝑡, ..., 𝑋𝑛𝑡) ∼ 𝐶2(𝐹1𝑡(𝑥1𝑡), 𝐹2𝑡(𝑥2𝑡), ..., 𝐹𝑛𝑡(𝑥𝑛𝑡); 𝜃2), 𝑡 = 𝑠1 + 1, 𝑠1 + 2, ..., 𝑠2,

...

(𝑋1𝑡, 𝑋2𝑡, ..., 𝑋𝑛𝑡) ∼ 𝐶𝑘(𝐹1𝑡(𝑥1𝑡), 𝐹2𝑡(𝑥2𝑡), ..., 𝐹𝑛𝑡(𝑥𝑛𝑡); 𝜃𝑘), 𝑡 = 𝑠𝑘 + 1, 𝑠𝑘 + 2, ..., 𝑇.
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where 𝐹𝑖𝑡(∙; 𝛾) is the 𝑖th marginal distribution with parameters 𝛾; 𝐶𝑘(..., 𝜃𝑘) is the 𝑛-dimensional

copula function with parameters 𝜃𝑘 at a specific time; 𝑠 is the change point for marginal distri-

bution and copula function. More specifically, 𝑠𝑖𝑗 is the 𝑗th change point of the 𝑖th marginal

distribution and 𝑠𝑚 is the 𝑚th change point in copula function. 𝑇 is the size of sample.

2.1.1 Goodness-of-Fit Test

We will use goodness-of-fit to test whether an empirical copula is stable or change at a certain

time.

Suppose that the unknown copula 𝐶 belongs to a parametric copula family: 𝐶0 = 𝐶𝜃 : 𝜃 ∈ Ω,

where Ω is an open sub-set of 𝑅𝑞 for some integer 𝑞 ≥ 1. A GOF test is to distinguish between

two hypotheses:

𝐻0 : 𝐶 ∈ 𝐶0 𝑜𝑟 𝐻1 : 𝐶 /∈ 𝐶0.

To implement the test, many procedures have been proposed. Among these literatures

Genest et al (2009) suggests that, based on large scale simulations, powerful GOF tests can be

obtained from the process:

𝐶𝑛(𝑢) =
√
𝑛𝐶𝑛(𝑢)− 𝐶𝜃𝑛(𝑢), 𝑢 ∈ [0, 1]𝑑 (2)

where 𝐶𝑛 is the empirical copula of samples 𝑋1, 𝑋2, ..., 𝑋𝑛:

𝐶𝑛(𝑢) =
1

𝑛

𝑛∑
𝑖=1

1{𝑈𝑖≤𝑢}, 𝑢 ∈ [0, 1]𝑑 (3)

and 𝐶𝜃𝑛 is an estimator of 𝜃 calculated by the maximum pseudo-likelihood approach proposed

in Genest et al (2009), Shih and Louis (1995). To obtain approximate p-values for tests based

on statistics derived from the GOF test such as Cramer-von Mises statistic, Genest el al. (2009)

applied the parametric bootstrap approach and obtained good results. However, this procedure

has an extremely high computational cost when the size of sample becomes large, which is
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regarded as an obstacle to its application. An alternative approach proposed by Ivan Kojadinovic

and JunYan (2009) is to use a multiplier procedure. Because of its convenience and efficiency, we

decide to use this procedure in our empirical work. For detailed analysis of multiplier procedure

please see corresponding literatures.

2.1.2 Dynamic Copula Analysis

If the result of test suggests that the dependence structure may change, we have to detect

the change points. In this paper, we employ the binary segmentation procedure proposed by

Vostrikova (1981) to find out the change points.

The binary segmentation procedure is as follows: we first choose the best copula according

to the AIC criterion on the whole sample, then divide the whole sample into two sub-samples,

and choose the best copulas on these two sub-samples respectively. If the two best copulas are

different from the copula on the whole sample, we continue this segmentation procedure, and

divide each sub-sample into two parts again, and do the same work as in the previous step. At

last, the procedure ends when all the best copulas on the sub-samples have been adjusted. From

this method, we can get all the change points for our model.

3 CDO Pricing Model

In this section, we give the pricing model for a standard CDO. Firstly, we consider the issue of

default probability. Let 𝜏 be default time, then the probability that an obligor defaults within

time 𝑡 is 𝐹 (𝑡) = 𝑃 (𝜏 ≤ 𝑡). This function can also be written as:

𝐹 (𝑡) = 1− exp(−
∫ 𝑡

0
𝜆(𝑢)𝑑𝑢) (4)

where 𝜆(𝑡) is the default intensity or hazard rate function. In real world hazard rate can’t be ob-

served at all time, so when pricing credit derivatives we always assume that 𝜆(𝑡) is deterministic
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and can be obtained from the following equation (See Cherubini et al (2004)):

𝜆(𝑡) =
𝑆𝑡

1−𝑅
(5)

where 𝑆𝑡 is the credit spread and can be observed in real markets; 𝑅 is the recovery rate. In

this paper, the 𝑖th obligor’s default time can be described to be:

𝜏𝑖 := inf{𝑡 :
∫ 𝑡

0
𝜆𝑖(𝑢)𝑑𝑢 ≥ 𝐸𝑖} (6)

where 𝐸𝑖 are exponential r.v.s of parameter 1 and independent of the intensity process.

To obtain the joint distribution of default time, we apply copula function into our model.

From the definition of copula function, we can get the joint default distribution function as

follows:

𝑃𝑟(𝜏1 ≤ 𝑡1, 𝜏2 ≤ 𝑡2, ..., 𝜏𝑛 ≤ 𝑡𝑛) = 𝐶(𝐹1(𝑡1), 𝐹2(𝑡2), ..., 𝐹𝑛(𝑡𝑛)) (7)

From above equation we can obtain correlated default times, and then price a CDO. For sim-

plicity, we assume that default time, risk-free interest rates and recovery rates are independent.

The CDO includes 𝑛 reference obligors, each of which has a nominal amount 𝐴𝑖 and recovery

rate 𝑅𝑖 with 𝑖 = 1, 2, ..., 𝑛. If the 𝑖th obligor defaults, then the loss is equal to 𝐿𝑖 = (1−𝑅𝑖)𝐴𝑖.

Let 𝑁𝑖(𝑡) = 1{𝜏𝑖<𝑡} be the counting process which jumps from 0 to 1 when the 𝑖th obligor

default. Then we can obtain the cumulative loss of the collateral portfolio at time 𝑡:

𝐿(𝑡) =
𝑛∑

𝑖=1

𝐿𝑖𝑁𝑖(𝑡) (8)

Suppose a CDO tranche has an attachment point 𝐶 and a detachment point 𝐷, satisfying

0 ≤ 𝐶 ≤ 𝐷 ≤ ∑𝑛
𝑖 𝐴𝑖, then the cumulative losses on a given tranche 𝑀𝑡 is:

𝑀(𝑡) = [𝐿(𝑡)− 𝐶]1{𝐶,𝐷}[𝐿(𝑡) + (𝐷 − 𝐶)]1{𝐷,
∑𝑛

𝑖=1
𝐴𝑖}(𝐿(𝑡)) (9)
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When 𝐶 = 0, we call it the equity tranche; when 𝐶 > 0 and 𝐷 <
∑𝑛

𝑖 𝐴𝑖, we consider the

mezzanine tranches, and when 𝑀 =
∑𝑛

𝑖 𝐷𝑖, we refer to senior or superior tranches. The investor

in a tranche is equivalent to sell a default protection to sponsors and get some premium or spread

for undertaking the risk of CDO. To obtain a fair spread, we calculate the default payment leg

(𝐷𝐿) and premium leg (𝑃𝐿) at 𝑡 = 0.

Let 𝐵(0, 𝑡) be the discount factor at time 𝑡, and 𝑇 be the maturity of CDO, then we can

write the default leg of the given tranche as:

𝐷𝐿 = 𝐸𝑄[

∫ 𝑇

0
𝐵(0, 𝑡)𝑑𝑀(𝑡)] (10)

Assume 𝑡𝑖 denotes the premium payment date, Δ𝑖−1,𝑖 = 𝑡𝑖 − 𝑡𝑖−1 denotes the tenor between

successive premium payment dates, and 𝑊 is the fair spread, then the premium leg is:

𝑃𝐿 = 𝐸𝑄[
𝑚∑
𝑖=1

Δ𝑖−1,𝑖 ⋅𝑊 ⋅𝐵(0, 𝑡𝑖) ⋅ [𝐷 − 𝐶] ⋅ 1{𝐿(𝑡)≤𝐶}

+
𝑚∑
𝑖=1

Δ𝑖−1,𝑖 ⋅𝑊 ⋅𝐵(0, 𝑡𝑖) ⋅ [𝐷 − 𝐶] ⋅ 1{𝐶≤𝐿(𝑡)≤𝐷}] (11)

In a continuous time setting, we can express the discounted value at time 0 of the premium leg

as:

𝑊 ⋅ 𝐸𝑄[

∫ 𝑇

0
𝐵(0, 𝑡)𝑔(𝐿(𝑡))𝑑𝑡] (12)

where 𝑔(𝐿(𝑡)) = min{max[𝐷 − 𝐿(𝑡), 0], 𝐷 − 𝐶}. Then the fair spread 𝑊 can be obtained:

𝑊 =
𝐸𝑄[

∫ 𝑇
0 𝐵(0, 𝑡)𝑑𝑆(𝑡)]

𝐸𝑄[
∫ 𝑇
0 𝐵(0, 𝑡)𝑔(𝐿(𝑡))𝑑𝑡]

(13)

In the following section we use Monte Carlo simulation to calculate the fair spread.

8



4 Empirical Study

4.1 Data

In this section, we apply the dynamic copula model to price a CDO. First, we assume that a

CDO is composed of 6 obligations that come from the companies belonging to Chinese stock

market, and each single item has the principal of 10 million dollars. Hence the collateral portfolio

has a nominal amount equal to 60 million dollars. For simplicity, suppose that the CDO has

a maturity of 1 year and the risk-free interest rate is equal to 10% per year. For simplicity,

the credit spreads and corresponding recovery rates of all obligations are set to 100 bps and 0.4

separately. The profit and loss structures of the CDO are reported in Table 1.

Table 1: Tranches and the loss undertaken.
Tranche Size(%) Subordination(%) Loss Undertaken(%)

A 10 [0,10] [0,10]*60m
B 10 [10,20] [10,20]*60m
C 15 [20,35] [20,35]*60m
D 65 [35,100] [35,100]*60m

Figure 1: Daily equity log-returns: CUCN

Because one cannot observe a time to default series, we have to find an alternative way to

estimate the parameters for both marginal distribution and copulas. We adopt the IFM method
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Figure 2: Daily equity log-returns: CMB

by using the corresponding equity prices for each obligation in CDO which is introduced in

Cherubini and Luciano (2004).

We choose six stocks from different typical industries to describe the dependence structure

in the CDO. The sample data set contains 1578 daily observations from October 9, 2002 to June

9, 2009. We report the log-returns of two equities (CUCN and CMB) in Figure 1 and Figure 2.

The other four equities have similar behaviors.

4.2 Model and Parameter Estimation

As many researches point out, the returns pattern of financial data always shows heteroscedas-

ticity behavior. Our figures also confirmed this. So we decide to use the 𝐺𝐴𝑅𝐶𝐻(1, 1)−𝑡 model

for each log-return series.

𝑦𝑡 = 𝜎𝑡𝜀𝑡

𝜎2
𝑡 = 𝛼+ 𝛽𝑦2𝑡−1 + 𝛾𝜎2

𝑡−1

Here 𝜀𝑡 ∼ 𝑖.𝑖.𝑑.𝑡𝜐(0, 1). The estimates of the parameters of this model are reported in Table 2.

As we can see in Table 2, all GARCH parameters are statistically significant.
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Table 2: Estimates of GARCH(1,1) parameters and standard errors

CUCN CMB WISCO Sinopec DZT MINLIST

𝛼
(Std err.)

0.00000586
(0.00000281)

0.00000399
(0.00000176)

0.0000128
(0.00000427)

0.00000507
(0.00000216)

0.00000378
(0.0000017)

0.0000033
(0.0000012)

𝛽
(Std err.)

0.086399
(0.016883)

0.055111
(0.011630)

0.220725
(0.032421)

0.085423
(0.015548)

0.097305
(0.017803)

0.066558
(0.012678)

𝛾
(Std err.)

0.918322
(0.013624)

0.940697
(0.011867)

0.807365
(0.020844)

0.91312
(0.014519)

0.906847
(0.013938)

0.935021
(0.011925)

𝜐
(Std err.)

3.953288
(0.462773)

5.928757
(0.819326)

4.459542
(0.360773)

4.999693
(0.714801)

5.508508
(0.741022)

6.117094
(0.648769)

Figure 3: Scatter plot of the dependence between CUCN and CMB/CUCN and
Sinopec

To obtain joint default distribution, we consider five copulas, Gaussian copula, Student’s t,

Gumbel, Frank and Clayton copula. Gaussian copula is the most widely used copula in past

years. When we adopt Gaussian copula, we need to calculate the variance and-covariance matrix

which contains 𝑛×(𝑛−1)
2 (𝑛 is the number copula’s dimension) elements. We report the scatter

plot of the dependence between some reference entities in figure 3 and figure 4, where we can

see there exist more dispersion in the tails. For such a reason we take Student’s t copula into

our consideration.

As for the parameters of copula, we firstly adjust the best copula for the standard residual

series over the whole sample using Akaike information criterion (AIC) which is computed by the
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following formula.

𝐴𝐼𝐶 = −2𝐿(𝜃;𝑥) + 2𝑞 (14)

Where 𝑞 is the number of parameters of copula and 𝐿(𝜃;𝑥) is the maximized log-likelihood

value. The copula having the smallest AIC value is the best one.We show the results in Table

3. Obviously Student’s t copula is the best one. We, then, use GOF test which we briefly

introduced before to test whether the best copula is stable. The 𝑝-value we get is equal to 0.003,

hence the null hypothesis is rejected and the data set does not remain static.

Table 3: Copula fitting results.

Copula Parameters AIC Convergence

Gaussian

0.895(0.0037); 0.891(0.0039)
0.907(0.0033); 0.878(0.0044)
0.879(0.0043); 0.881(0.0042)
0.895(0.0037); 0.861(0.0049)
0.862(0.0049); 0.887(0.004)
0.866(0.0048); 0.869(0.0046)
0.867(0.0047); 0.867(0.0047)

0.861(0.0049)

-10879.8 T

Student’s t

0.918(0.0035); 0.924(0.0033)
0.929(0.0031); 0.911(0.0039)
0.909(0.0039); 0.91( 0.0038)
0.917(0.0036); 0.894(0.0045)
0.892(0.0046); 0.916(0.0036)
0.901(0.0042); 0.903(0.0042)
0.899(0.0043); 0.896(0.0044)
0.898(0.0043); 6.29(0.3097)

-11857.2 T

Gumbel 3.39(0.0306) -10640.8 T

Frank 11.047(0.1116) -11715 T

Clayton 1.392(0.0197) -5515.56 T

Figures in the brackets are stand errors. For Student’s t copula, the last parameter is the
degree of freedom and ”T” presents ”True”.

4.3 Copula Change Analysis

In the following step, we use binary segmentation procedure described in Section 2.3 to detect

the change of copulas. We check each sub samples carefully and find out that in most time

period, Frank copula and Student’s t copula fit better to the data, and in a short time period,

Gaussian copula domain the dependent structure in data matrix. We compute a relative AIC

value to compare the result of each copula in fitting the data. We choose Student’s t copula

12



to be a benchmark and calculate the relative value by [𝐴𝐼𝐶(𝑡− 𝑐𝑜𝑝𝑢𝑙𝑎)−𝐴𝐼𝐶(𝑐𝑜𝑝𝑢𝑙𝑎)/𝑛.𝑜𝑏𝑠.]

(Here 𝑛.𝑜𝑏𝑠. is the number of observations). The relative result is reported in Figure 5 (with 16

sub samples). By comparing the relative result in different segments, we can obtain the change

time for copula and the results are reported in Table 4.

Figure 4: The relative AIC of copulas

As can be seen, the duration of CDO is divided into 9 stages denoted by I, II, III, IV, V, VI,

VII, VIII and IX. Each stage has a different copula function that fit best for the data. Some of

the changes points are coincide with real financial incidents.

In Nov 7. 2005, copula family changes from Student’s t copula to Frank copula. This change

corresponds to equity division reform in Chinese stock market. Under this reform, the stock

market in China ended its 4 years bearish market and turned into bull market.

On May 24. 2007, copula family changes from Gaussian copula to Frank copula. This

date corresponds to the subprime mortgage crisis in American. Under the impact of this crisis,

Chinese stock market becomes more and more fluctuant. Before this date, the standard deviation

of the Shanghai Composite Index is 593.9959, while after this date it becomes 1242.5.
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Table 4: Changes of copula.

Stage Time Period Copula Parameters Change Time

I 10/10/2002-05/08/2003 Student’s t 𝐶1

II 06/08/2003-30/12/2003 Frank 11.106(0.4527) 06/08/2003
III 31/12/2003-06/06/2004 Student’s t 𝐶2 31/12/2003
IV 07/06/2004-28/10/2004 Frank 11.606(0.4596) 07/06/2004
V 29/10/2004-06/11/2005 Student’s t 𝐶3 29/10/2004
VI 07/11/2005-23/07/2006 Frank 10.845(0.3551) 07/11/2005
VII 24/07/2006-23/05/2007 Gaussian 𝐶4 24/07/2006
VIII 24/05/2007-08/01/2009 Frank 11.216(0.2282) 24/05/2007
IX 09/01/2009-10/07/2009 Student’s t 𝐶5 09/01/2009

Figures in the brackets are stand errors. In the first stage, 𝐶1= (0.957, 0.964, 0.965, 0.934,
0.92, 0.935, 0.955, 0.926, 0.911, 0.949, 0.923, 0.911, 0.931, 0.908, 0.903), corresponding
stand errors are (0.0056, 0.0047, 0.0044, 0.0087, 0.01, 0.008, 0.0057, 0.0094, 0.0112, 0.0063,
0.0096, 0.0115, 0.0088, 0.0116, 0.0121). The degree of freedom is 4.419 with stand error
0.4927. In the third stage, 𝐶2= (0.94, 0.905, 0.912, 0.921, 0.919, 0.912, 0.917, 0.936,
0.921, 0.898, 0.886, 0.918, 0.863, 0.894, 0.898), corresponding stand errors are (0.0103,
0.0164, 0.0147, 0.0137, 0.0147, 0.0152, 0.0141, 0.0111, 0.014, 0.017, 0.0191, 0.0148, 0.0221,
0.0181, 0.0175). The degree of freedom is 6.279 with stand error 1.3412. In the fifth
stage, 𝐶3= (0.933, 0.928, 0.934, 0.92, 0.916, 0.929, 0.927, 0.914, 0.912, 0.922, 0.905, 0.905,
0.911, 0.901, 0.915), and stand errors are (0.0075, 0.0078, 0.007, 0.0087, 0.009, 0.0076,
0.0078, 0.0095, 0.0096, 0.0084, 0.0101, 0.01022, 0.0094, 0.0104, 0.0091). The degree of
freedom is 6.271 and stand error is 0.8312. In the seventh stage, 𝐶4= (0.868, 0.874,
0.84, 0.828, 0.828, 0.864, 0.85, 0.832, 0.85, 0.856, 0.846, 0.846, 0.796, 0.82, 0.844) with
stand errors (0.0129, 0.0126, 0.0157, 0.0168, 0.017, 0.0135, 0.0146, 0.0163, 0.0148, 0.0143,
0.0153, 0.0155, 0.0197, 0.0178, 0.0154). In the ninth stage, 𝐶5= (0.923, 0.921, 0.927, 0.917,
0.917, 0.914, 0.936, 0.903, 0.893, 0.897, 0.889, 0.909, 0.91, 0.888, 0.899) and stand errors
is (0.0133, 0.013, 0.0123, 0.0143, 0.0144, 0.0147, 0.0111, 0.0168, 0.0184, 0.0169, 0.0189,
0.0155, 0.0154, 0.0192, 0.0181). The degree of freedom is 6.415 and stand error is 1.2896.
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4.4 CDO Pricing

In Jan 9. 2009, copula family changes from Frank copula to Student’s t copula. This change

point corresponds to the relatively stability of stock market after the financial crisis. In China

the stock index started to rise slowly.

After we got the dynamic dependent structure of each CDO items we can simulate its default

time and then calculate its fair spreads. By using the method introduced in Part 3, we simulate

every firm’s default time under each stage. In order to obtain the number of defaults that may

occur prior to maturity date, we firstly generate 10000 random variates from the copula that best

fit for the data sets, and then using equation (3.1) and (3.2) .we can calculate the corresponding

default time . Figure 6 reports the histograms of the distribution of the simulated time to default

of CUCN and CMB.

For the given recovery rates and simulated default numbers, we calculated the expected loss

and fair spread of each tranche for all nine stages. The results are reported in Table 5 and Table

6.

Table 5: Expected loss of each tranche in nine stages.× ( 1000).

Tranche
Stages and Corresponding Best Copula

I II III IV V VI VII VIII IX
t Frank t Frank t Frank Gaussian t Frank

A 284.4 449.4 273 461.4 294.9 417.6 256.8 416.4 291.6
B 220.8 280.8 252 241.2 264 230.4 255.6 223.2 283.2
C 150.6 65.4 195 46.5 186 55.5 211.5 50.7 220.8
D 136.2 6 123 5.7 130.5 6.9 75.3 5.1 117.6

Table 6: Fair spread of each tranche in nine stages.

Tranche
Stages and Corresponding Best Copula

I II III IV V VI VII VIII IX
t Frank t Frank t Frank Gaussian t Frank

A 2.64% 7.95% 3.42% 8.14% 3.26% 7.35% 4.49% 7.31% 3.87%
B 1.89% 2.38% 2.16% 2.04% 2.25% 1.95% 2.20% 1.88% 2.41%
C 1.37% 0.31% 1.32% 0.22% 1.42% 0.26% 1.02% 0.24% 1.40%
D 0.35% 0.02% 0.32% 0.01% 0.33% 0.02% 0.19% 0.01% 0.30%

From Table 5 and Table 6, we detect that the expected loss and fair spread are not the

same under different stages. Generally speaking, in stages that Frank copula domains the
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Figure 5: Histogram of simulated default times for CUCN and CMB
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dependent structure, the fair spread is higher in tranche A,B and lower fair spread in tranche

C,D. More specifically, in stages that Frank copula domains the dependent structure, the fair

spread of tranche A is above of 7%, while in stages that Student’s t copula domains the dependent

structure, the corresponding fair spread is less than 4%. Fair spreads of tranche D in stages with

Frank copula are less than 0.1% while for Student’s t copula they are all above 0.3%. Expected

loss and fair spread under Gaussian copula are close to those under Student’s t copula.

4.5 Comparison to static Gaussian and dynamic Gaussian

In order to give a comparison, we use static copula model and dynamic Gaussian copula model

to price the same CDO.

As we see in table 3, student’s t copula is the best one fitting to the data, so we use student’s

t copula and it’s corresponding parameters to price the same CDO. We also employ Gaussian

copula model to calculate a comparable result. The results are presented in table 7.

Table 7: Expected loss and fair spread of each tranche in static copula model.

Copula model Tranche Expected loss Fair spreads

Student’s t copula

A 322.2 4.12%
B 278.4 2.89%
C 192.6 1.88%
D 147 0.46%

Gaussian copula

A 244.4 4.41%
B 202.4 2.09%
C 155.6 0.77%
D 67 0.16%

The results in table 7 show that tranche B, C and D have a greater fair spread than that in

dynamic copula model which indicate that the tail dependence is well captured by student’s t

copula. However, this static student’s t copula model tends to create too heavy a tail dependence

structure in default correlation and lead to misprice to CDO. In static Gaussian copula model,

tranches B, C and D have smaller fair spreads than that in static student’s t copula which

indicates that this model is lack of tail dependence.
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In the following part, we choose Gaussian copula as the basic copula and let the parameter

change to see the pricing of CDO in dynamic Gaussian copula. We calculate the parameters

in nine stages which we divide in dynamic copula model and the results are reported in table

8. Table 9 and table 10 show the expected loss and fair spread respectively in each tranches of

nine stages. In order to give an intuitional comparison, we plot the fair spread of each tranche

calculated by three models together and report them in figure 7 to figure 10.

Table 8: Estimated results for dynamic Gaussian copula.

Stages I II III IV V VI VII VIII IX

Gaussian copula

0.931
0.923
0.942
0.879
0.875
0.893
0.931
0.869
0.857
0.918
0.871
0.853
0.891
0.868
0.872

0.917
0.916
0.946
0.894
0.889
0.888
0.900
0.850
0.842
0.897
0.850
0.860
0.870
0.854
0.829

0.927
0.880
0.907
0.901
0.876
0.894
0.909
0.927
0.886
0.882
0.859
0.876
0.844
0.857
0.858

0.905
0.782
0.907
0.891
0.857
0.795
0.915
0.888
0.861
0.776
0.790
0.808
0.857
0.866
0.885

0.909
0.903
0.914
0.897
0.886
0.916
0.924
0.888
0.885
0.907
0.884
0.888
0.890
0.877
0.894

0.868
0.891
0.881
0.844
0.893
0.867
0.857
0.814
0.849
0.884
0.857
0.833
0.828
0.862
0.770

0.871
0.877
0.854
0.839
0.833
0.870
0.855
0.831
0.854
0.886
0.848
0.859
0.804
0.819
0.848

0.870
0.892
0.908
0.887
0.890
0.874
0.879
0.857
0.856
0.886
0.893
0.890
0.898
0.891
0.880

0.901
0.911
0.914
0.882
0.905
0.897
0.914
0.848
0.865
0.881
0.845
0.898
0.871
0.862
0.852

Table 9: Expected loss of each tranche in nine stages.×( 1000).

Tranche
Stages and Corresponding Best Copula

I II III IV V VI VII VIII IX

A 340.8 290.4 352.8 318 289.2 309.6 256.8 297.6 325.2
B 328.2 257.7 329.1 276.9 267.6 250.2 255.6 257.7 304.2
C 244.2 222 245.4 268.2 234.6 261 211.5 229.2 240.6
D 130.2 104.7 126.3 101.1 109.2 93.6 75.3 100.5 118.8

Table 10: Fair spread of each tranche in nine stages.

Tranche
Stages and Corresponding Best Copula

I II III IV V VI VII VIII IX

A 5.27% 4.73% 5.30% 5.76% 4.99% 5.58% 4.49% 4.88% 5.16%
B 3.56% 3.01% 3.67% 3.31% 2.99% 3.21% 2.20% 3.08% 3.39%
C 1.92% 1.51% 1.93% 1.62% 1.56% 1.46% 1.02% 1.50% 1.78%
D 0.40% 0.32% 0.39% 0.31% 0.34% 0.29% 0.19% 0.31% 0.37%

In the last four figures, we can see that dynamic copula model has the greatest range in fair

spread. Dynamic Gaussian copula model shows a smaller range but the wave direction of the
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Figure 6: Fair spread of tranche A by three models

Figure 7: Fair spread of tranche A by three models
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Figure 8: Fair spread of tranche A by three models

Figure 9: Fair spread of tranche A by three models
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results is similar with dynamic copula model. In the figure 9 and figure 10, which is in case of

tranche C and D, the fair spread calculated by static student’s t copula model is remarkably

higher than that by dynamic copula model and dynamic Gaussian copula model. As student’s t

copula is tend to stress the tail dependence, the higher fair spread in tranche C and D illustrate a

clustering phenomenon in dependence structure, which is approved in Xianhua Peng and Steven

Kou(2009). However, the static student’s t copula model suggest that the default correlation is

exist all the time and remain static, which is not proper because the dependence structure tend

to change instead of static even in case of tail dependence.

5 Conclusion

In this paper, we use dynamic copula method to describe the dynamic default correlation between

the obligors of multi–name credit derivatives. We choose GOF test to check the stability of a

single copula model and find the static copula model is not reliable when dealing with dependent

structure of financial series. Based on this fact, the binary segmentation procedure is used to

detect the change point of default correlation during credit derivative’s life. The empirical results

suggest that there are nine different stages in the whole sample and each stage has a best copula

to fit the data set. In each stage we calculate the expected loss and fair spread for every tranche

Results show that spreads of a CDO are not always the same. Under different situation, even the

same CDO has different risk and hence has different expected loss and fair spread. This explains

why investors suffered so much loss when financial crisis happened. We also give a comparison

among static copula model, dynamic Gaussian copula model and dynamic copula model. The

comparison suggest that static student’s t copula model tend to stress the tail dependence in

default correlation and dynamic Gaussian copula model has similar results as dynamic model

but the result is less sensitive to the change of dependence structure.
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